

Charting the course to a net-zero maritime future through pilots and trials

Professor Lynn Loo Chief Executive Officer Theodora D. '78 & William H. Walton III '74 Professor in Engineering | Princeton University

Shipping is a global industry

decades

+ Responsible for transporting **11B tons** of goods annually, or **80%** of global trade

Global Centre fo

MARITIME DECARBONISATION

- + Contributes to **2.5%** of global GHG emissions, greater than the emissions of the sixth largest emitter (Germany)
- + IMO targets (2023 revised strategy)

Targeting **20%**, striving for **30%** emissions reduction by **2030**

Targeting **70%**, striving for **80%** emissions reduction by **2040**

Net zero around 2050

Total goods loaded in world seaborne trade, millions of metric tons, 1970–2021

The rising tide of seaborne trade over the

Shipping's emissions are difficult to abate

Shipping is **heterogeneous**, requiring a heterogeneous set of solutions

54,816

others

5,855 container

13,182 bulk / cargo carriers

20,553 general cargo

12,309 crude oil tankers

Source: unctadstat.unctad.org (2023)

Ecosystem for maritime decarbonisation **not mature**

Existing solutions cannot get shipping to net-zero

Alternative fuels not available at cost or scale

5% of shipping's **fuel** must have zero emissions by 2030

Global Centre for

MARITIME DECARBONISATION

Source: GMF, 2021, Getting to Zero Coalition

IMO's adopts landmark measure to price GHG emissions

Clearest signal yet: Switch fuels to minimise operations cost

Energy source + savings impact emissions penalties

Energy savings lower penalties linearly

Reduction in GFI lowers penalties disproportionately

Implications of IMO's GFI framework

Existing vessels can minimise fuel and compliance costs by progressively introducing drop-in fuels Transition to new builds that consume ZNZ fuels hinges on price of Reward units

Contextualising GCMD's efforts

GCMD biofuels end-to-end supply chain trials

9,400 MT of biofuel blends bunkered on seven vessels; 24% reduction of GHG emissions

SWIRE BULK

TotalEneraie

UPS

VISWA GROUP

CAO: Crude Algae Oil FAME: Fatty Acid Methyl Ester HVO: Hydrotreated Vegetable Oil HSFO: High Sulfur Fuel Oil MGO: Marine Gas Oil VLSFO: Very Low Sulfur Fuel Oil UCOME: Used Cooking Oil Methyl Ester

Impact of continuous biofuels use on vessel operations

Four bunkerings of 1,000 MT each into two onboard storage tanks over six months

Global Centre for MARITIME DECARBONISATION

In operando sample monitoring **+** post-trial inspection revealed **no** major issues

Engine performance

Main engine: No significant issues detected

+ Comparable to VLSFO at maximum continuous rating

Generator engines: No significant degradation in performance

Fuel delivery system

Fuel and lube oil samples: **No anomalies** Purifier efficiency & filter change frequency: **Unchanged**

Fuel quality under long-term stowage (6 months)

ISO 8217 tests: Within specs

Engine inspection with OEM and classification societies

Crude algae oil (CAO) engine compatibility tests

Results from Chevron's 4-stroke engine test; testing on 2-stroke engine ongoing

Project REMARCCABLE

Retrofitting an OCCS system on the Stena Impero

	Analysis carried out on the	Emissions analysis	Project partners	
Close-up view of the OCCS mega-skid module and the liquefaction unit placed behind the bridge	<mark>Stena Impero,</mark> a Medium Range tanker	CO ₂ emissions can be reduced by as much as 24% per year	OI AND GAS CLIMATE INITIATIVE	
Desorber Unit	Vessels of similar size contribute 17% of shipping's emissions	With fuel consumption penalty of under 10%	TNO innovatio for life	
Desorber Unit Absorber Unit	Cost analysis CAPEX USD 13.6M (+/-15%)	Extends CII rating of "C and better" for the		

¹Assuming a Carbon Intensity Indicator (CII) reduction factor of 2% from 2027 onwards

Energy needs for OCCS: an opportunity for re-optimisation

OCCS requires **1250 kWth** and **200 kWe**; electrical power adequately supplied by auxiliary engine(s)

Existing boilers

Global Centre fo

MARITIME DECARBONISATION

- + Waste heat from main engine already being recovered and used; **no excess thermal energy**
- + 16.7% fuel penalty to general thermal energy for OCCS

With steam economiser + 2x microboilers

- Waste heat recovery makes up 34.5% of thermal energy needed; remaining 820 kWth to come from using more fuel
- + 10.2% fuel penalty to provide thermal energy for OCCS

New build with heat pumps

- + New vessel 12% more fuel efficient
- + 15.6% fuel penalty to generate thermal energy for OCCS
- + 1.5% fuel penalty relative to Stena Impero; or
 10% of original fuel penalty

Onboard storage of CO₂ has unique safety challenges

Impurities and small changes in T, P can impact phase boundaries; risk of hitting triple point

* Adapted from The Engineering ToolBox. Carbon Dioxide - Thermophysical Properties. Jan 2024 https://www.engineeringtoolbox.com/CO2-carbon-dioxide-properties-d_2017.html

Potential first mover in green ammonia

Pilbara Ports:
Dampier
Port Hedland

Bulk carriers delivering iron ore from point to point between Western Australia-Northeast Asia

A Potential Port for Ammonia 5% of all tradeable ammonia are currently supplied through Dampier

- Start of the busiest iron ore route
- About **7,700** vessel calls in the Pilbara Ports for 2023

MARITIME DECARBONISATION

 Potential demand of 1-1.5 million tonnes of bunker by 2035

Source: Kpler, 11 Oct 2024 Vessel traffic for iron-ore carrying capesize and newcastle max bulk carriers

Successful ship-to-ship ammonia transfers

In the anchorage of Port of Dampier; in collaboration with and with approval from the Australian Maritime Safety Authority

AVIGATOR GAS BH

Global Centre for

MARITIME DECARBONISATION

Goal of our pilot

To showcase **lightering** and simulate **bunkering** operations before ammonia-fueled vessels are available

Four areas of focus:

Global Centre for

MARITIME DECARBONISATION

Liquid ammonia transferred between vessels

4,000 cbm (2,700 tonnes) transferred @ 700-800 cbm/hr

Vapouriser, to maintain positive tank pressure and manage back pressure in lines

Elements to facilitate ammonia bunkering

Global Centre for

MARITIME DECARBONISATION

All images used are for illustrative purposes only. Individual features, as well as sizes and fittings, are not drawn to scale and will vary.

Engine community at frontline of maritime decarbonisation

New fuels + cargo bring new considerations that impact hardware design, materials selection, equipment operations and interoperability

Properties

- + Combustibility
- + Toxicity
- + Corrosiveness
- + Viscosity

+ Liquid

+ Gas

Contaminants

Phases

- + Moisture
- + Phosphorus
- + Nitrogen oxides
- + Free fatty acids, ...

Partner with us to accelerate maritime decarbonisation

Founders/ Strategic partners		Coalition partners					
BHP R EASTERN DNV MPA	ݼ Seatrium	International Chamber of Ship	oping	SSA SINGAPORE SHIPPING ASSOCIATION			
bp		Knowledge partners					
🔅 🕜 Hanwha Ocean 🛛 🕊 Hapag-Lloyd			SBN 🔅 KPLER 🔶 Mærs	k Mc-Kinney Møller Center			
Impact partners Enabling partners							
BCG the human see gard MOL senergy company Gard MitsulOSK Lines		K I R I					
And ~100 project partners							
Enabling ammonia as a marine fuel*	Assuring the quality emissions abatement of o	y, quantity and drop-in green fuels*	Unlocking the carbo	n value chain			
	ANGELICOUSSIS 🔊 AngloAmerican 🔏 Astom	oos Energy Authentix AVL 💸	ABS ADVARIO				
Tratelli Cosulich Gard Under LAM MARTINE Sendercare Fondercare	C BHP 🌼 🗷 Bunke	erTrace the human CMA CGM	bp the energy company. DELTAMARIN [®] EASTER SHIPP	EMERSON.			
Jurong Port KENOIL MILLING KK.Lines		nergies 🄅 🛞 GoodFuels	gard 🕊 Hapag-Lloyd Jurong Po				
	Hapag-Lloyd <mark>汇盛生物</mark> HUIS ON 前 IDS Group MAN	Energy Solutions MARAN TANKERS MANAGEMENT INC.	A NAVIGATOR GAS				
PILBARA PORTS OF SEATECH Seatrium		Saybot	Port of Rotterdam Report Stipping				
	SWIRE BULK		Seatrium	TTO innovation for life Woodside Energy			

* Initiatives partially funded by MPA; partners for the initiative "Scaling the Adoption of Energy Efficiency Technologies" will be announced soon

Thank you!

Scan the QR code to download GCMD reports and papers

Global Centre for

MARITIME DECARBONISATION

- 8 Robinson Road #06-01 | Singapore 048544
- <u>www.gcformd.org</u>

0

projects@gcformd.org

